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Biological subtypes in Alzheimer’s disease, originally identified on neuropathological data, have been translated to in vivo bio-

markers such as structural magnetic resonance imaging and positron emission tomography, to disentangle the heterogeneity within

Alzheimer’s disease. Although there is methodological variability across studies, comparable characteristics of subtypes are reported

at the group level. In this study, we investigated whether group-level similarities translate to individual-level agreement across sub-

typing methods, in a head-to-head context. We compared five previously published subtyping methods. Firstly, we validated the

subtyping methods in 89 amyloid-beta positive Alzheimer’s disease dementia patients (reference group: 70 amyloid-beta negative

healthy individuals) using structural magnetic resonance imaging. Secondly, we extended and applied the subtyping methods to 53

amyloid-beta positive prodromal Alzheimer’s disease and 30 amyloid-beta positive Alzheimer’s disease dementia patients (reference

group: 200 amyloid-beta negative healthy individuals) using structural magnetic resonance imaging and tau positron emission tom-

ography. Subtyping methods were implemented as outlined in each original study. Group-level and individual-level comparisons

across methods were performed. Each individual subtyping method was replicated, and the proof-of-concept was established. At

the group level, all methods captured subtypes with similar patterns of demographic and clinical characteristics, and with similar

cortical thinning and tau positron emission tomography uptake patterns. However, at the individual level, large disagreements

were found in subtype assignments. Although characteristics of subtypes are comparable at the group level, there is a large dis-

agreement at the individual level across subtyping methods. Therefore, there is an urgent need for consensus and harmonization

across subtyping methods. We call for the establishment of an open benchmarking framework to overcome this problem.
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Introduction
The study of biological subtypes has opened a great op-

portunity to unravel the heterogeneity within Alzheimer’s

disease. The topic was rekindled in 2011 by the seminal

study from Murray et al. (2011), and during the last 5

years, it has exploded with numerous structural magnetic

resonance imaging (sMRI) subtyping studies [see Ferreira

et al. (2020) for a review]. In 2018, the first tau positron

emission tomography (PET) subtyping study was pub-

lished (Whitwell et al., 2018), and more are expected to

come in the near future.

However, studies investigating Alzheimer’s disease sub-

types differ considerably, with almost no methodological

consensus. Murray et al. (2011) based subtyping on post-

mortem tau neurofibrillary tangle (NFT) counts in the

hippocampus and three cortical regions. All patients were

at Braak’s stage V or VI (Braak and Braak, 1995) and

were classified into three subtypes according to the 25th

and 75th percentiles in the hippocampus-to-cortex index:

typical Alzheimer’s disease, limbic-predominant

Alzheimer’s disease and hippocampal-sparing Alzheimer’s

disease. Byun et al. (2015) translated this subtyping

method to sMRI data using volumes of the same brain

regions as in Murray’s method, but defined abnormality

as �1 standard deviation from age-, sex- and intracranial

volume (ICV)-adjusted normative data of healthy con-

trols. This method identified a fourth subtype: minimal

atrophy Alzheimer’s disease (Byun et al., 2015). In con-

trast, Risacher et al. (2017) followed the 25th and 75th

percentiles procedure using the hippocampus-to-cortex

index but extended the three cortical regions used by

Murray et al. (2011) to seven regions. Risacher et al.

(2017) also corrected for age, sex and ICV, but they

based this correction on a reference group of amyloid-

beta negative (Ab�) healthy controls and used a different

correction method additionally including the MRI field

strength. Ferreira et al. and follow-up studies from our
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lab used visual rating scales of brain atrophy in medial

temporal, frontal and posterior cortices (Ferreira et al.,

2017, 2018, 2019; Persson et al., 2017; Ekman et al.,

2018; Oppedal et al., 2019; Machado et al., 2020) and

determined clinical cut points for abnormality (Ferreira

et al., 2015). We also used unsupervised clustering in an-

other cross-sectional study by Poulakis et al. (2018),

which was recently extended for subtyping on longitudin-

al data (Poulakis et al., 2020). Other groups used differ-

ent unsupervised clustering methods (Noh et al., 2014;

Dong et al. 2015, 2017; Hwang et al. 2016; Na et al.,

2016; Zhang et al. 2016; Park et al. 2017; Varol et al.

2017), highlighting the methodological variability across

studies. Additionally, Charil et al. (2019) recently trans-

lated Murray’s method to tau PET while Whitwell et al.

(2018) applied a clustering method on tau PET data.

Despite this variability, all these studies tend to identify

subtypes with similar characteristics, arguing for valid-

ation [see Ferreira et al. (2020) for a review]. However,

this validation is reported at the group level. The ultimate

goal of investigating heterogeneity in Alzheimer’s disease

is to understand individual variability, hence, necessitating

individual-level validation. Surprisingly, no head-to-head

comparison of subtyping methods has been published so

far. Such a comparison arises as an urgent and important

step towards facilitating consistent progress in this field,

especially with the current surge in subtyping studies

using sMRI investigating subtype or disease progression

(Young et al., 2018; Marinescu et al., 2019; Poulakis

et al., 2020) and tau PET (Whitwell et al., 2018; Charil

et al., 2019; Jeon et al., 2019). To illustrate this problem,

in the present study, we applied different subtyping meth-

ods reported in five previous studies (Murray et al.,

2011; Byun et al., 2015; Ferreira et al., 2017; Risacher

et al., 2017; Poulakis et al., 2018; Charil et al., 2019) on

sMRI and tau PET data from the same cohort. Thereby,

we substantiated our claim for the need for harmonizing

subtyping methods, which aims at achieving consensus at

group- and individual-levels despite methodological differ-

ences. In our primary analyses, we performed a head-to-

head comparison and report subtypes’ frequencies, char-

acteristics and cortical thickness and tau PET uptake

maps from the different methods. In our secondary analy-

ses, we investigated how methodological variations influ-

ence the performance of the different subtyping methods.

We hypothesized that across subtyping studies, the com-

parability of subtypes at the group level may not trans-

late to the individual level.

Materials and methods

Participants

All participants were selected from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI; http://adni.loni.

usc.edu/). The goal of the ADNI (launched in 2003,

principal investigator: Michael W. Weiner; Mueller et al.,

2005) is to measure the progression of prodromal

Alzheimer’s disease and early Alzheimer’s disease using

MRI, PET, biomarkers and clinical and neuropsychologic-

al assessments. We included two separate ADNI cohorts:

Firstly, since subtypes have been predominantly identi-

fied in Alzheimer’s disease dementia, we validated the

previously published subtyping methods using sMRI in a

cohort of 89 Alzheimer’s disease dementia patients (Abþ)

from ADNI-1. We also included a control group of 70

Ab� healthy individuals (HC). Amyloid status was deter-

mined by cerebrospinal fluid biomarkers (Ab1-42 cut-off

¼ 192 pg/ml) (Shaw et al., 2009).

Secondly, subtyping was applied to a cross-sectional co-

hort of 84 patients (54 Abþ prodromal Alzheimer’s dis-

ease patients, 30 Abþ Alzheimer’s disease dementia

patients) subsampled from ADNI-2 and -3 using sMRI

and tau PET. The control group comprised 200 Ab�
HC. Amyloid status was determined through amyloid

PET (florbetapir SUVR cut-off ¼ 1.11; Joshi et al., 2012

or florbetaben SUVR cut-off ¼ 1.08, following ADNI’s

current recommendation, http://adni.loni.usc.edu/).

We will refer to these two cohorts as the sMRI cohort

(ADNI-1, Alzheimer’s disease dementia patients) and the

sMRI-tauPET cohort (ADNI-2 and -3, prodromal

Alzheimer’s disease and Alzheimer’s disease dementia

patients). We validated the previously published methods

(Byun et al., 2015; Ferreira et al., 2017; Risacher et al.,

2017; Poulakis et al., 2018; Charil et al., 2019) in the

sMRI cohort and extended our analyses to the sMRI-

tauPET cohort. The study protocol followed by all partic-

ipating centres within the ADNI was approved by their

respective institutional review board. Informed and writ-

ten consent was obtained from all the participants.

MRI and PET imaging

MRI acquisition and processing

3D accelerated T1-weighted sequences were acquired with

sagittal slices and voxel size 1.1� 1.1� 1.2 mm3. MRI

data for the ADNI-1 were acquired on 1.5 T scanners,

and MRI data for ADNI-2 and -3 were acquired on

3.0 T scanners.

For the sMRI cohort, processed data were already

available from our previous studies (Ferreira et al., 2017;

Poulakis et al., 2018). For methods from other labs

(Risacher et al., 2017; Byun et al., 2015) and for all the

methods in the sMRI-tauPET cohort, data were unavail-

able, so we processed the sMRI through TheHiveDB sys-

tem (Muehlboeck et al., 2014) with FreeSurfer 6.0.0

(http://freesurfer.net/). Following the cross-sectional

stream, quality control of the output from FreeSurfer was

conducted visually. Automatic region of interest parcella-

tion yielded volumetric measures for cortical and subcor-

tical brain structures (Fischl et al., 2002; Desikan et al.,

2006; Destrieux et al., 2010). For the subtyping method

using visual rating scales (Ferreira et al., 2017), the
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ratings were computed automatically using Automatic

Visual Ratings of Atrophy v0.8 (https://github.com/gsmar

tensson/avra_public) (Mårtensson et al., 2019), a deep

learning model trained on over 3000 MRI scans rated by

an expert neuroradiologist with excellent inter-rater

agreement (Mårtensson et al., 2020).

Tau PETacquisition and processing

Tau PET scans were collected using PET/CT scanners.

[18F]AV-1451 was injected with a dosage of 370 MBq

(10.0 mCi) 6 10% and scans were acquired between 75

and 105 min post-injection. The dynamic acquisition was

30 min long and comprised 6� 5 min frames. For each

tau PET scan, a sMRI was available within 90 days (ex-

cept in three Alzheimer’s disease dementia and five pro-

dromal Alzheimer’s disease patients, >90 days).

For subtyping methods using tau PET (Murray et al.,

2011; Byun et al., 2015; Risacher et al., 2017; Charil

et al., 2019), processing was performed using the

PetSurfer Toolbox (Greve et al., 2016) within FreeSurfer

6.0.0. AV-1451 images were co-registered onto the corre-

sponding FreeSurfer-processed sMRI. The regions (cortical

and subcortical grey matter) estimated for each individual

were consistent with those used for sMRI-based subtypes

(Desikan et al., 2006). Partial volume correction (PVC)

was applied using the symmetric geometric matrix

method (ROUSSET and OG 1998). AV-1451 signal was

quantified in each region as the standardized uptake

value ratio (SUVR), computed with the cerebellum grey

matter as the reference region with PVC.

Subtyping methods

Based on two recent systematic reviews (Ferreira et al.,

2020; Habes et al., 2020), we identified four sources of

methodological variation in subtyping studies:

i. Type of method (hypothesis-driven versus data-driven).

ii. Definition of subtype (dependent on the sample of study

versus dependent on an external reference group).

iii. Modality (postmortem NFT versus sMRI versus tau

PET).

iv. Measure (regional NFT count versus automated regional

volumes/SUVR values versus gross visual ratings).

The method proposed by Murray et al. (2011) is the

only one based on postmortem NFT count and motivated

subsequent neuroimaging studies. In this study, we

focused on neuroimaging-based methods based on five

subtyping studies, covering all these levels of methodo-

logical variation: Risacher et al. (Risacher et al., 2017),

Byun et al. (Risacher et al., 2017), Ferreira et al.

(Ferreira et al., 2017), Poulakis et al. (Poulakis et al.,

2018) and Charil et al. (Charil et al., 2019). Each sub-

typing method was implemented to replicate the original

method as closely as possible, as elaborated further in

Table 1, Fig. 1 and Supplementary Table 1. We also

translated some sMRI-based methods to tau PET to test

subtyping based on tau pathology (Byun et al., 2015;

Risacher et al., 2017). For Byun’s method on tau PET,

we identified a minimal tau subtype that is not captured

by Charil’s or Risacher’s methods.

Quantification of AV-1451 signal in the hippocampus,

a key region for subtyping in many studies (Byun et al.,

2015; Risacher et al., 2017; Charil et al., 2019), is con-

tentious (Lee et al., 2018; Lemoine et al., 2018). Hence,

we additionally applied subtyping using the entorhinal

cortex instead of the hippocampus, also facilitating com-

parability with the study by Whitwell et al. (2018).

Methodological variations

As a secondary objective, we implemented the following

methodological variations, evaluating their potential im-

pact on agreements among subtyping methods:

i. The effect of using three versus seven cortical regions in

Risacher’s method

Although Risacher et al. (2017) translated Murray’s

method (Murray et al., 2011) to sMRI, Risacher’s

method included seven cortical regions instead of the

original three regions in Murray’s method. Here, we

compared these two versions of Risacher’s method: with

three versus seven cortical regions.

ii. The effect of statistical corrections for ICV and age on

sMRI methods
In our primary analysis, we evaluated the method by

Risacher et al. (2017) (seven cortical regions) by adjust-

ing for ICV and age using a single regression model for

both covariates. Here, we evaluated the impact of

adjusting for ICV only, or adjusting for ICV and age

using separate regression models for each covariate. We

also performed these comparisons for Risacher’s method

using three cortical regions.

iii. The effect of statistical corrections for age on tau PET

methods

In the primary analysis of tau PET-based subtyping

(Byun et al., 2015; Risacher et al., 2017; Charil et al.,

2019), potential covariates were not considered.

Correction for ICV is not necessary unlike in sMRI

methods, but age may potentially affect tau PET SUVR

(Schöll et al., 2016). Here, we compared subtyping with

age-corrected SUVR and uncorrected SUVR.

iv. The effect of PVC on tau PET-based subtyping methods

In the primary analysis, we used PVC for reliably quan-

tifying tau PET SUVR, accounting for any off-target

binding, especially in the hippocampus (Ikonomovic

et al., 2016; Lowe et al., 2016). Here, we compared sub-

typing between PVC SUVR and non-PVC SUVR.

Statistical analysis

We compared subtyping methods at the group-level in

terms of age, sex, mini-mental state exam (MMSE), edu-

cation and APOE e4 status. Within each subtyping

method, hypothesis testing was performed to compare the
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distribution of subtypes with the Kruskal–Wallis test. A

P-value �0.05 was deemed significant. Group-level cor-

tical thickness and PVC tau PET uptake maps were gen-

erated by comparing each subtype with the healthy

controls. In each hemisphere, data were smoothed onto

the surface using a 10 mm Gaussian kernel with a full

width at half maximum. A general linear model was fit-

ted at each vertex. All maps were visualized at P� 0.01

(uncorrected). Individual-level agreement among subtyping

methods was quantified by Cohen’s kappa (j< 0, no

agreement; j¼ 0–0.20, slight agreement; j¼ 0.21–0.40,

fair agreement; j< 0.41–0.60, moderate agreement;

Table 1 Overview of the subtyping methods implemented in this study

Method Type of method Definition of

subtypes

Modality Measure Subtypes Graphical

representation

Charil (25) Hypothesis-driven Within-sample

dependent

tau PET SUVR TAD, LP, HS Fig. 1A

Risacher (6) Hypothesis-driven Within-sample

dependent

sMRI and tau PET Automated volumes

and SUVR

TAD, LP, HS Fig. 1B

Byun (5) Hypothesis-driven External reference

group

sMRI and tau PET Automated volumes

and SUVR

TAD, LP, HS, MAa Fig. 1C

Ferreira (7) Hypothesis-driven External reference

group

sMRI Visual ratings TAD, LP, HS, MA Fig. 1D

Poulakis (15) Data-driven Within-sample

dependent

sMRI Automated

volumes

TADb, LP, HS, MA Fig. 1E

HS ¼ hippocampal-sparing; LP ¼ limbic-predominant; MA ¼ minimal atrophy; SUVR ¼ standardized uptake value ratio; TAD ¼ typical AD.
aMA corresponds to the subtype identified by the sMRI-based method. For the tau PET-based method, the corresponding subtype would be minimal tau.
bThe two clusters reflecting typical Alzheimer’s disease patterns in the original publication by Poulakis et al. (15) were combined into a single typical Alzheimer’s disease subtype to

allow comparisons across subtyping methods.

Figure 1 Graphical representation of the subtyping methods implemented in this study. aThis figure corresponds to the

sMRI-based method. For the tau PET-based method, volume measures are replaced with SUVR and classification of LP and HS is reversed;
bZH ¼ z-score for hippocampus; ZF ¼ z-score for frontal regions; ZP ¼ z-score for parietal regions; ZT ¼ z-score for temporal regions. This

figure corresponds to the sMRI-based method and z-scores are computed for volumes. For the tau PET-based method, volume measures are

replaced with SUVR and abnormal tau levels have z-scores � 1. HS ¼ hippocampal-sparing; LP ¼ limbic-predominant; MA ¼ minimal atrophy;

SUVR ¼ standardized uptake value ratio; TAD ¼ typical AD.
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j¼ 0.61–0.80, substantial agreement; j¼ 0.81–1.0, al-

most perfect agreement) (Landis and Koch, 1977).

Data availability

Source data are available as a part of the ADNI. All data

generated or analysed during this study are included

within this article and its supplementary information files.

Results
Table 2(a, b) shows the demographic and clinical charac-

teristics for the sMRI cohort and sMRI-tauPET cohorts,

respectively.

Validation of subtyping methods in
the sMRI cohort

The frequencies of the subtypes in the sMRI cohort were

very similar to the frequencies reported in the original

studies (Byun et al., 2015; Ferreira et al., 2017; Risacher

et al., 2017; Poulakis et al., 2018; Charil et al., 2019)

suggesting we could replicate the subtyping methods

(Table 3).

Group-level comparison of
subtyping methods in the sMRI and
sMRI-tauPET cohorts

Figure 2 shows that, at the group-level, the subtyping

methods captured similar demographic and clinical char-

acteristics of the subtypes in both cohorts. Typical

Alzheimer’s disease was always the most frequent subtype

and showed a greater frequency of males and lower

MMSE scores relative to the other subtypes. Limbic-pre-

dominant Alzheimer’s disease showed lower MMSE

scores relative to hippocampal-sparing Alzheimer’s dis-

ease. Hippocampal-sparing Alzheimer’s disease was the

subtype with the lowest frequency of APOE e4 carriers.

Minimal atrophy/minimal tau Alzheimer’s disease

included younger individuals and showed higher MMSE

scores.

Figures 3 and 4 and Supplementary Table 2 show that,

at the group-level, the subtyping methods captured simi-

lar cortical thickness and PVC tau PET uptake maps of

the subtypes relative to healthy individuals. Cortical thin-

ning and elevated tau PET uptake included widespread

regions in typical Alzheimer’s disease; temporal and lim-

bic regions in limbic-predominant Alzheimer’s disease;

frontal or parietal regions in hippocampal-sparing

Alzheimer’s disease; and relatively fewer regions in min-

imal atrophy/minimal tau Alzheimer’s disease, across all

subtyping methods. Typical and limbic-predominant

Alzheimer’s disease showed smaller hippocampal volume

and greater hippocampal tau PET SUVR relative to hip-

pocampal-sparing and minimal atrophy/minimal tau

Alzheimer’s disease (boxplots in Figs 3 and 4). Figure 5

shows the group-level tau PET uptake maps for entorhi-

nal-based subtyping instead of hippocampus-based sub-

typing. Compared to hippocampus-based subtyping,

albeit similar maps, hippocampal-sparing Alzheimer’s dis-

ease in entorhinal-based subtyping showed no tau PET

uptake in lateral temporal lobe regions. Greater tau

SUVR in the entorhinal cortex was seen in typical and

limbic-predominant Alzheimer’s disease compared to hip-

pocampal-sparing and minimal tau Alzheimer’s disease

(boxplots in Fig. 5).

Head-to-head comparison of
subtyping methods in the sMRI-
tauPET cohort

Figure 6A and C shows the head-to-head comparison of

individual-level subtype assignments. Agreement among

methods was low, reflected by low values of j.

Agreement among the tau PET-based methods was rela-

tively higher than that of the sMRI-based methods. Since

not all methods identify the minimal atrophy/minimal tau

Alzheimer’s disease, we excluded this subtype in follow-

up analyses and observed increased j values in both

cohorts and modalities (Fig. 6B and D). ADNI’s partici-

pant identifiers are listed in Supplementary Fig. 2 and in

Supplementary Data File.

Methodological variations in the
sMRI-tauPET cohort

When supplementing our head-to-head comparisons with

several methodological variations, we observed the fol-

lowing (Supplementary Data File):

i. The effect of using three versus seven cortical regions in

Risacher’s method
Results from Risacher’s method using three cortical

regions were consistent with Risacher’s method using

seven cortical regions (85% agreement).

ii. The effect of statistical corrections for ICV and age on

sMRI methods

Relative to Risacher’s method (seven cortical regions

and adjusted for ICV and age in a single model), 82%

of the individuals were classified consistently when per-

forming the ICV correction only, and 69% when per-

forming the ICV and age correction with separate

models. Relative to the variation in Risacher’s method

using three cortical regions (and adjusted for ICV and

age in a single model), 98% of the individuals were clas-

sified consistently when performing the ICV correction

only, and 74% when performing the ICV and age cor-

rection with separate models. Overall, agreements were

better in typical Alzheimer’s disease (79–88%) com-

pared to the other subtypes (15–83%).

iii. The effect of statistical corrections for age on tau PET

methods
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Table 2 Demographic and clinical characteristics of the cohorts

(a) Validation of subtyping methods in AD dementia patients (sMRI cohort)

HC (Ab2) AD dementia (Ab1) P-value

N 70 89

Sex (F,%) 51 39 0.139

Age (years) 75.15 6 5.22 [62, 89] 74.73 6 7.72 [57, 88] 0.757

Education (years) 15.66 6 2.65 [8, 20] 15.16 6 3.24 [4, 20] 0.402

APOE e4 carriers (%) 10 74 <0.0001

MMSE 29.04 6 1.10 [25, 30] 23.48 6 1.87 [20, 26] <0.0001

Word recall task 2.86 6 1.17 [0 5.67] 6.24 6 1.34 [3.33, 9.33] <0.0001

Naming objects and fingers 0.08 6 0.28 [0, 1] 0.43 6 0.56 [0, 2] <0.0001

Following commands 0.05 6 0.23 [0, 1] 0.40 6 0.63 [0, 3] <0.0001

Constructional praxis 0.41 6 0.49 [0, 1] 0.91 6 0.65 [0, 3] <0.0001

Ideational praxis 0.05 6 0.23 [0, 1] 0.33 6 0.72 [0, 5] 0.0007

Orientation 0.12 6 0.37 [0, 2] 2.06 6 1.61 [0, 7] <0.0001

Word recognition task 2.38 6 2.24 [0, 12] 6.51 6 2.88 [1, 2] <0.0001

Recall of test instructions 0 6 0 [0, 0] 0.31 6 0.88 [0, 5] 0.0005

Spoken language 0.02 6 0.16 [0, 1] 0.30 6 0.64 [0, 3] 0.0006

Word finding difficulty 0.04 6 0.20 [0, 1] 0.59 6 0.95 [0, 4] <0.0001

ADAS total score 6.06 6 2.79 [1.67, 14.33] 18.38 6 6.26 [8.67, 42.67] <0.0001

(b) Subtyping methods in prodromal AD and AD dementia patients (sMRI-tauPET cohort)

HC (Ab�) Prodromal AD (Abþ) AD dementia (Abþ) P-value

N 200 54 30

Sex (F, %) 59 48 50 0.285

Age (years) 70.45 6 5.65 [55.8, 89]a 74.09 6 7.34 [59.4, 90.1]a 77.46 6 8.27 [55.9, 91.2]a <0.0001

Education (years) 16.90 6 2.31 [11, 20]a 15.76 6 2.66 [12, 20]b 15.77 6 2.57 [12, 20]b 0.002

APOE e4 carriers (%) 22 61 53 <0.0001

MMSE 29.24 6 1.05 [23, 30]a 27.48 6 2.30 [19, 30]a 22.13 6 4.23 [9, 30]a <0.0001

Word recall task 2.36 6 1.81 [0 6]a 4.34 6 1.49 [1, 7]a 6.09 6 1.61 [3, 10]a <0.0001

Naming objects and fingers 0.03 6 0.37 [0, 3] 0.04 6 0.19 [0, 1]b 0.56 6 0.89 [0, 3]b <0.0001

Following commands 0.06 6 0.24 [0, 1] 0.22 6 0.41 [0, 1]b 0.40 6 0.91 [0, 3]b 0.0011

Constructional praxis 0.33 6 0.55 [0, 3] 0.48 6 0.57 [0, 2] 0.72 6 0.79 [0, 3]b 0.0084

Ideational praxis 0.05 6 0.38 [0, 5] 0.08 6 0.34 [0, 2] 0.28 6 0.54 [0, 2]b <0.0001

Orientation 0.09 6 0.29 [0, 1]a 0.50 6 0.73 [0, 3]a 2.8 6 2.1 [0, 7]a <0.0001

Word recognition task 4.92 6 1.91 [0, 10]a 5.9 6 2.77 [0, 12]a 9.28 6 2.73 [3, 12]a <0.0001

Recall of test instructions 0.005 6 0.07 [0, 1] 0.14 6 0.53 [0, 3]b 0.95 6 1.39 [0, 5]b <0.0001

Spoken language 0.005 6 0.07 [0, 1]a 0.04 6 0.19 [0, 1]a 0.44 6 1.00 [0, 4]a <0.0001

Word finding difficulty 0.04 6 0.27 [0, 3]a 0.18 6 0.43 [0, 2]a 0.88 6 1.05 [0, 3]a <0.0001

ADAS total score 8.08 6 2.86 [1, 19.33]a 11.98 6 4.66 [3, 24]a 21.68 6 7.48 [7, 37]a <0.0001

Data are reported as mean 6 standard deviation [minimum, maximum]; Hypothesis testing was performed using the Kruskal–Wallis test for the continuous variables and v2 test

for the nominal variables. Additionally, the Kruskal–Wallis test was performed pairwise between groups in the sMRI-tauPET cohort.

AD ¼ Alzheimer’s disease; ADAS ¼ Alzheimer’s Disease Assessment Scale-Cognitive Subscale; APOE ¼ apolipoprotein; Ab ¼ amyloid-beta; F ¼ female; HC ¼ healthy control;

MMSE ¼ mini-mental state examination; PET ¼ positron emission tomography; sMRI ¼ structural MRI.
aSignificantly different from each of the other two groups.
bSignificantly different from HC group only.

Table 3 Frequencies of the subtypes compared with previously published studies in the sMRI cohort

Subtype Risacher Byun Ferreira Poulakis

Pub. This study Pub. This study Pub. This study Pub.a This

study

Typical AD 69 69 59 55 51 52 69 66

Hippocampal-sparing 17 19 12 17 17 19 7 10

Limbic-predominant 14 12 19 21 17 18 4 1

Minimal atrophy 10 7 15 11 19 23

Data are reported as % and rounded to the nearest integer for readability.

AD ¼ Alzheimer’s Disease; Pub. ¼ published study.
aFrequencies of subtypes based on the ADNI cohort only, since the original study by Poulakis et al. (15) also includes another cohort.
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Figure 2 Demographic and clinical characteristics captured by the different subtyping methods. The bar plots for sex and APOE

e4 show what percentage of patients in each subtype were females and APOE e4 carriers, respectively. Kruskal–Wallis hypothesis testing was

conducted comparing the subtypes within each method; *P < 0.05 within the subtyping method. APOE ¼ apolipoprotein; F ¼ female; HS ¼
hippocampal-sparing; LP ¼ limbic-predominant; MA ¼ minimal atrophy; MMSE ¼ mini mental state exam; MT ¼ minimal tau; PET ¼ positron

emission tomography; sMRI ¼ structural magnetic resonance imaging; TAD ¼ typical AD.
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Over 80% of the individuals were consistently classified

with and without age-adjusted tau SUVR (agreement

for: Charil’s method ¼ 89%; Risacher’s method ¼
100%; Byun’s method ¼ 80%).

iv. The effect of PVC on tau PET-based subtyping methods
Over 80% of the individuals were consistently classified

with PVC and non-PVC SUVR (agreement for: Charil’s

method ¼ 87%; Risacher’s method ¼ 89%; Byun’s

method ¼ 80%). Overall, agreements were better in typ-

ical Alzheimer’s disease (83–94%) compared to the

other subtypes (56–78%).

Discussion
The field of biological subtypes of Alzheimer’s disease

has expanded rapidly in the last decade, with numerous

recent publications on neuropathological, MRI and PET

data. However, the great methodological variability is

complicating reaching a definitive understanding of the

heterogeneity within Alzheimer’s disease. The current

study is the first head-to-head comparison of several sub-

typing methods in the same cohort. We found that differ-

ent methods identify subtypes that are largely comparable

at the group level (similar frequencies, demographic, clin-

ical characteristics, cortical thinning and tau PET uptake).

However, strikingly, the individual-level agreement among

subtyping methods is very low when compared head-to-

head. This result may have important implications for

advancing the implementation of precision medicine.

Below, we discuss several factors that may explain this

finding and ways to minimize this problem in future

studies.

Comparability across studies at the group level suggests

a convergence of results and initial consensus on the

existence of three to four major subtypes: typical, limbic-

predominant and hippocampal-sparing Alzheimer’s dis-

ease in all the studies, and minimal atrophy Alzheimer’s

disease in several studies. Minimal atrophy Alzheimer’s

disease is only identified when considering disease sever-

ity, while the other subtypes are identified when consider-

ing typicality (Ferreira et al., 2020). The dimensions of

Figure 3 Group-level cortical thickness maps across subtyping methods in the sMRI-tauPET cohort. For simplicity, only left lateral

and medial views are presented since very similar results were obtained for the right lateral and medial views. Differences in cortical thickness

maps are shown in each subtype relative to HC, generated by fitting general linear model at each vertex. Yellow-red regions reflect thinner

cortex in Alzheimer’s disease subtypes relative to HC. All brain maps are uncorrected for multiple comparisons at P < 0.01. Risacher et al.

identified three subtypes only and hence, there are no cortical maps corresponding to MA subtype. Poulakis et al. identified all four subtypes.

However, the HS subtype (one individual) had to be excluded from the study due to invalid tau PET data. HC¼healthy control; HS ¼
hippocampal-sparing; LP ¼ limbic-predominant; MA¼ minimal atrophy; TAD ¼ typical AD.
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severity and typicality were defined in a recent conceptual

framework for biological subtypes of Alzheimer’s disease

(Ferreira et al., 2020). Typicality spans from limbic-pre-

dominant to hippocampal-sparing, with typical

Alzheimer’s disease in-between. Severity differentiates

minimal atrophy from typical Alzheimer’s disease,

accounting for neurodegeneration.

The seminal study by Murray et al. (2011) based subtyp-

ing on tau NFT in the hippocampus and three cortical

regions. Importantly, all the patients had a pathological

diagnosis of Alzheimer’s disease with Braak stage of V or

VI (Braak and Braak, 1995). This means that all patients

had NFT in the hippocampus by definition, and the method

focused on separating the subset of patients with NFT pre-

dominantly in the hippocampus (limbic-predominant

Alzheimer’s disease) from those with NFT predominantly in

the cortical regions (hippocampal-sparing Alzheimer’s

disease). Remainder of the patients had a rather balanced

NFT count in the hippocampus and cortical regions and

were classified as typical Alzheimer’s disease.

Murray’s method (Murray et al., 2011) motivated

many subsequent sMRI studies (Ferreira et al., 2020;

Habes et al., 2020). However, these studies rely on

sMRI, a marker of unspecific neurodegeneration. This

raises several problems. Firstly, while sMRI can reliably

track neuropathologically defined subtypes (Whitwell

et al., 2012), the actual distribution of NFT in sMRI sub-

types remains largely unknown. Recent studies have pro-

vided interesting preliminary data on tau PET uptake in

sMRI-based subtypes (Jeon et al., 2019; Ossenkoppele

et al., 2020). Secondly, the published sMRI subtype stud-

ies quite likely included patients in Braak NFT Stage IV

or lower. Thirdly, most sMRI studies investigated cohorts

including both amyloid-beta positive and negative

Figure 4 Group-level PVC tau PETuptake maps across subtyping methods using the hippocampus in the sMRI-tauPET

cohort. For simplicity, only left lateral and medial views are presented since very similar results were obtained for the right lateral and medial

views. Differences in tau PETuptake maps are shown in each subtype relative to HC, generated by fitting general linear model at each vertex.

Cyan regions reflect greater PVC tau PETuptake in Alzheimer’s disease subtypes relative to HC. All brain maps are uncorrected for multiple

comparisons at P < 0.01. HC ¼ healthy control; HS ¼ hippocampal-sparing; LP ¼ limbic-predominant; MT ¼ minimal tau; TAD ¼ typical AD.
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Alzheimer’s disease dementia patients except a few

(Risacher et al., 2017; ten Kate et al., 2018), while all the

patients in Murray et al. (2011) had a pathological diagno-

sis of Alzheimer’s disease. Fourthly, neurodegeneration is

downstream to NFT pathology (Dubois et al., 2014), and

there is a time gap until overt brain atrophy can be visual-

ly observed or captured by automatic methods for data

analysis. Nonetheless, some data-driven methods may cap-

ture subtle differences in regional covariance in the absence

of overt brain atrophy, mitigating this problem. Altogether,

we still need a better understanding of the correspondence

between neuropathologically, sMRI- and tau PET-defined

subtypes. A major contribution of our current study is that

subtypes identified with sMRI and tau PET are not inter-

changeable at the individual level.

At the group level, findings for the demographic and

clinical measures were in agreement with previously

reported studies and a recent meta-analysis (Ferreira

et al., 2020). Broadly, typical Alzheimer’s disease was the

most frequent subtype; typical and limbic-predominant

Alzheimer’s disease were older in comparison to the hip-

pocampal-sparing and minimal atrophy Alzheimer’s dis-

ease; MMSE scores were mostly comparable across

subtypes with minimal atrophy Alzheimer’s disease show-

ing the highest scores; a lower proportion of APOE e4
carriers belonged to hippocampal-sparing relative to

typical and limbic-predominant Alzheimer’s disease and

hippocampal-sparing Alzheimer’s disease had the highest

levels of education.

Overall, head-to-head comparisons revealed greater

agreement of tau PET-based methods than the sMRI-

based methods. This could be potentially attributed to:

(i) lower resolution of tau PET and smaller proximity of

the key regions involved in subtyping, (ii) comparison of

Figure 5 Group-level PVC tau PETuptake maps across subtyping methods using the entorhinal cortex in the sMRI-tauPET

cohort. For simplicity, only left lateral and medial views are presented since very similar results were obtained for the right lateral and medial

views. Differences in tau PETuptake maps are shown in each subtype relative to HC, generated by fitting general linear model at each vertex.

Blue-cyan regions reflect PVC greater tau PETuptake in Alzheimer’s disease subtypes relative to HC. All brain maps are uncorrected for multiple

comparisons at P < 0.01. HC ¼ healthy control; HS ¼ hippocampal-sparing; LP ¼ limbic-predominant; MT ¼ minimal tau; TAD ¼ typical AD.
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merely three tau PET-based subtyping methods with rela-

tively less methodological variability or (iii) a more con-

sistent and direct emulation of postmortem NFT captured

in Murray et al. (2011) by tau PET compared to sMRI

which can capture variance unrelated to subtyping.

Future tau PET-based subtyping methods could shine

light on this finding. Low levels of agreement across sub-

typing methods at the individual-level could be ascribed

to a combination of one or more of the following factors:

(i) variation in cut points of atrophy or tau uptake used

to define the subtypes which may differ from dataset to

dataset; (ii) accounting for (or lack thereof) the two

dimensions of subtypes, namely typicality and severity, to

different degrees by different methods; (iii) forced alloca-

tion of each individual into a subtype without an associ-

ated measure of (un)certainty; (iv) accounting for (or lack

thereof) within-subtype variability (i.e. strong/weak resem-

blance) in the biological profiles of individuals assigned

to the same subtype. We call for the investigation of

these factors as a promising avenue to increase the agree-

ment between subtyping methods in the future.

Biologically, the head-to-head agreements are best

understood by considering individual exemplars. A con-

sistent scenario is participant identifier 2239: across the

sMRI methods, this individual was classified as hippo-

campal-sparing or minimal atrophy Alzheimer’s disease

whereas, across the tau PET methods, the individual was

classified as typical Alzheimer’s disease. The difference in

sMRI-based subtyping could be attributed to differences

in cut points for abnormality across methods. The fact

that the corresponding tau PET-based subtype was typical

Alzheimer’s disease (higher severity) could suggest greater

tau pathology relative to structural atrophy. A more chal-

lenging case is participant identifier 6377: across the

sMRI methods, this individual was classified as typical,

hippocampal-sparing, limbic-predominant, or minimal at-

rophy Alzheimer’s disease, whereas across the tau PET-

based method, the individual was classified as limbic-pre-

dominant Alzheimer’s disease. Some differences in

sMRI-based subtyping are relatively more plausible than

others, considering the above-mentioned typicality and se-

verity dimensions (Ferreira et al., 2020). To instantiate, it

sMRI cohort
A Including MA B Excluding MA

sMRI-tauPET cohort
C Including MA/MT D Excluding MA/MT

Figure 6 Individual-level agreement among subtyping methods as illustrated by Cohen’s kappa values. MA ¼ minimal atrophy

AD; MT ¼ minimal tau; PET ¼ positron emission tomography; sMRI ¼ structural magnetic resonance imaging.

12 | BRAIN COMMUNICATIONS 2020: Page 12 of 16 R. Mohanty et al.



may be plausible that this individual demonstrated typical

Alzheimer’s disease (with one method; Risacher et al.,
2017) and limbic-predominant Alzheimer’s disease

(with another method; Ferreira et al., 2017), as these two

subtypes are close to each other along the typicality di-

mension (Ferreira et al., 2020). However, classification as

limbic-predominant Alzheimer’s disease (with one

method; Ferreira et al., 2017) and hippocampal-sparing

Alzheimer’s disease (with another method; Byun et al.,

2015) seem incompatible, since these two subtypes corres-

pond to the extremities of the typicality dimension.

Therefore, a classification with all four subtypes for the

same individual leaves the case biologically uninterpret-

able, calling for consensus across subtyping in the field as

we aim for precision medicine.

Despite having several caveats, previous neuroimaging-

based subtyping studies have made important contribu-

tions. Byun et al. (2015) and Risacher et al. (2017) trans-

lated the NFT-based method by Murray et al. (2011) to

sMRI data, and Charil et al. (2019) translated the

method to tau PET. Our analyses of methodological var-

iations showed that the age correction made a stronger

impact on agreements among methods than the number

of cortical regions or the PVC. This impact was more

prominent for sMRI-based methods than for tau PET-

based methods; and for limbic-predominant and hippo-

campal-sparing subtypes than for typical Alzheimer’s

disease. Contribution of aging to hippocampal atrophy

may be at the basis of this finding. Lower disagreement

in typical Alzheimer’s disease relative to the other sub-

types is akin to the diagnostic challenge in the clinical

setting. An interesting result of our study is that the

method of adjustment (single model for all covariates

versus separate models for each covariate) increased the

disagreement. Future studies should take this finding into

account when deciding on how to correct for potential

confounders.

Ongoing research is moving the field forward by char-

acterization of subtypes not only in Alzheimer’s disease

dementia but also at earlier stages such as prodromal

Alzheimer’s disease (Zhang et al., 2016; ten Kate et al.,

2018; Young et al., 2018; Machulda et al., 2019).

Preliminary data show that such characterization could

be extended and evaluated at even the earliest stages of

preclinical Alzheimer’s disease or individuals with subject-

ive cognitive decline (Jung et al., 2016). In speculation,

relative to full-blown dementia, atrophy levels are likely

modest even if there exists overt tau pathology at pre-de-

mentia stages. This could result in a greater dissociation

between atrophy and tau pathology, further leading to

lower agreement across subtyping methods. In this scen-

ario, group-level comparisons alone are insufficient.

Individual-level agreement is thus warranted, and lack

thereof will prevent or delay the use of subtyping in clin-

ical routine, clinical trials, and research. Therefore, there

is an urgent need for harmonization of the different sub-

typing methods.

To this end, we advocate for establishing a framework

for benchmarking for future studies. A possibility could

be selection of a well-characterized cohort (preferably

with multimodal antemortem and postmortem data in a

longitudinal setting). This could include preparing a data-

set comprised of cognitively normal individuals (amyloid-

beta negative) and individuals on the Alzheimer’s disease

continuum (preclinical Alzheimer’s disease, prodromal

Alzheimer’s disease and Alzheimer’s disease dementia).

Multiple longitudinal biomarkers during life, such as neu-

roimaging such as MRI (structural, diffusion, functional,

etc.) and PET (fluorodeoxyglucose, amyloid, tau), cere-

brospinal fluid, plasma and neuropsychological measures,

could enable characterization of the subtypes in vivo
while neuropathological assessments can provide a

ground truth for subtyping. Unimodal (based on a single

image modality) as well as multimodal (based on combin-

ation of image modalities) subtypes should be differenti-

ated and demonstrated within the same cohort.

Additionally, the establishment of clear evaluation metrics

would allow for comparison of the performance of the

subtyping methods and could include group-level charac-

teristics, individual-level results, cut points for each meas-

ure used for subtyping, variability in cut points after

accounting for potential covariates, the certainty of as-

signment of subtype, variability in biomarker profiles

within the same subtype, etc. Greater similarity across

multiple evaluation metrics across methods would thus,

ensure harmonization across subtyping methods. The

dataset should be standard so that it can be utilized by

future subtyping methods to ensure individual-level con-

sistency across methods. The dataset should also be open

and accessible to all researchers in the field. Once vali-

dated, the subtyping method could obviously be extended

to independent populations and data. As a preliminary

step, we provide all the data used for subtyping in

this study along with ADNI participant identifiers

(Supplementary Data File).

This study has some limitations. The cohort was part

of the ADNI, which has strict selection criteria and

excludes individuals with non-amnestic presentations or

cerebrovascular pathology. It is likely that agreement

among subtyping methods is different in clinically ori-

ented or more heterogeneous cohorts. The number of

Alzheimer’s disease dementia patients was limited, and

prodromal Alzheimer’s disease patients, in which the de-

gree of atrophy may be smaller than in Alzheimer’s dis-

ease dementia, were overrepresented within the sMRI-tau

PET cohort used to demonstrate the lack of consensus in

subtyping. However, the additional and relatively large

sMRI cohort of Alzheimer’s disease dementia patients

strengthens and illustrates the case in point. Hypothesis-

driven methods are well covered in our study (Murray

et al., 2011; Byun et al., 2015; Ferreira et al., 2017;

Risacher et al., 2017; Charil et al., 2019). However, pre-

vious subtyping studies have applied many different data-

driven methods. Methods, especially involving clustering,
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can differ on if and/or how they account for critical

aspects of certainty of subtype allocation and variability

within each identified subtype. We selected Poulakis’

method (Poulakis et al., 2018), which resulted in notably

distinct subtyping potentially due to being most methodo-

logically different from the rest, and our current study

cannot provide direct insight on methods used by other

groups (Ferreira et al., 2020; Habes et al., 2020).

However, the selection of subtyping methods illustrates

the case made in the current study. We based our analy-

ses on cross-sectional tau PET and sMRI data. The next

step should be to include longitudinal data. However, the

availability of such a dataset is limited at present, par-

ticularly for tau PET. Longitudinal data will be relevant

to investigate disease progression in the subtypes, disen-

tangling the disagreement due to the temporal lag be-

tween NFT accumulation (tau PET) and brain atrophy

(sMRI) from pure methodological noise. Finally, the tau

PET tracer used in our study, [18F]AV-1451, is a first

generation tracer with known off-target binding (Leuzy

et al., 2019). Better agreement among the tau PET-based

subtyping methods than their sMRI counterparts could

indicate that they need to be further pursued. Second

generation tau PET tracers (e.g. 18F-RO-948, 18F-MK-

6240 and 18F-PI-2620) would be relatively more sensitive

and specific, especially at the preclinical and prodromal

stages of Alzheimer’s disease, although their longitudinal

trajectories remain to be fully investigated and validated

(Bischof et al., 2020).

The field of biological subtypes is expanding rapidly

with the investigation of multiple modalities/biomarkers

and extending to pre-dementia stages and other neurode-

generative diseases (Habes et al., 2020). We conclude

that subtyping methods may appear comparable across

studies, at the group-level. However, a major finding of

the present study is the large disagreement among subtyp-

ing methods based on tau PET and especially sMRI at

the individual level. Hence, there is an urgent need for

consensus and harmonization across subtyping methods.

To achieve this, we suggest establishment of an accessible

and standard framework for benchmarking. A compre-

hensive dataset along with clear evaluation metrics will

facilitate a fair comparison, ultimately ensuring better

agreement among future subtyping methods.
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